THE CRYSTAL STRUCTURE OF p-RIBONO-1,4-LACTONE AT -150°

YUKIO KINOSHITA, JOHN R. RUBLE, AND GEORGE A. JEFFREY

Department of Crystallography, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 (U.S.A.)

(Received September 2nd, 1980; accepted for publication, October 18th, 1980)

ABSTRACT

The crystal structure of p-ribono-1,4-lactone, 1, $C_5H_8O_5$, at -150° is orthorhombic, $P2_12_12_1$, with a=10.441(2), b=11.948(3), c=4.781(1) Å, V=596.43 Å (MoK α_1 , $\lambda=0.7107$ Å), Z=4, $D_m=1.626$ g cm⁻³ (20°), and $D_x=1.649$ g cm⁻³ (-150°). The 1,4-lactone ring has a conformation midway between E_3 and 2T_3 , with puckering comparable to that observed in the furanose rings of nucleosides. The C-O-C=O group has bond lengths of 1.467(1), 1.354(1), and 1.203(1) Å, respectively, and is slightly non-planar, with a C-O-C=O torsion angle of 172.7°. The molecules are linked by hydrogen bonds, which form chains. The carbonyl oxygen atom is involved in a weak, bifurcated hydrogen-bond interaction.

0008-6215/81/0000-0000/\$ 02.50, © 1981 — Elsevier Scientific Publishing Company

INTRODUCTION

The crystal structures of six simple γ -lactones have been studied. These are this structure (1), D-gulono-1,4-lactone¹ (2), D-galactono-1,4-lactone² (3), 2,3,6-tri-O-methyl-D-galactono-1,4-lactone³ (4), D-glucaro-1,4-lactone⁴ (5), and β -D-glucurono-6,3-lactone⁵ (6).

Comparison of these results provides information relating to the geometrical characteristics of the γ -lactone ring system and to what degree this can be distorted by crystal-field effects.

EXPERIMENTAL

D-Ribono-1,4-lactone 1, D-ribonic γ -lactone, CAS No. 5336-08-3, from Vega Biochemicals, was recrystallized from 80% ethanol-water at room temperature. A crystal 0.31 \times 0.37 \times 0.55 mm was used to measure 2786 symmetry-independent intensities at -150° , using MoK α graphite-monochromated radiation on a CAD-4 diffractometer. Of these, 2418 had values $> 2\sigma_c$, based on counting statistics. No corrections were made for absorption ($\mu_{\text{MoK}\alpha} = 1.616$) or extinction. The unit-cell parameters were determined by least-squares fit of $\sin^2\theta$ values for 40 reflections with $36^\circ \le 2\theta \le 43^\circ$.

TABLE I FRACTIONAL ATOMIC COORDINATES a FOR D-RIBONO-1,4-LACTONE AT -150°

	x	y	z	
C-1	33736(7)	9747(6)	32129(18)	
C-2	36756(7)	15508(6)	59463(17)	
C-3	51039(7)	17848(6)	56326(19)	
C-4	55262(7)	7195(6)	40785(19)	
C-5	58512(8)	-2578(7)	59720(20)	
O-1	23781(6)	9697(5)	19457(15)	
O-2	28616(6)	24733(5)	63223(15)	
O-3	52498(6)	27441(5)	39194(19)	
O-4	44336(6)	4396(5)	22790(14)	
O-5	64710(6)	-11410(5)	44691(16)	
H-2	356(1)	102(1)	734(4)	
H-3	558(1)	186(1)	723(4)	
H-4	623(1)	86(1)	280(3)	
H-51	507(1)	-55(1)	688(3)	
H-52	648(1)	2(1)	735(3)	
H-O-2	306(2)	288(1)	773(4)	
H-O-3	598(2)	287(1)	364(4)	
H-O-5	590(2)	-144(1)	356(4)	

 $^{^{}a}$ Values are \times 10 5 for non-hydrogen atoms, \times 10 3 for hydrogen atoms. Estimated standard deviations given in parentheses refer to the least-significant digit.

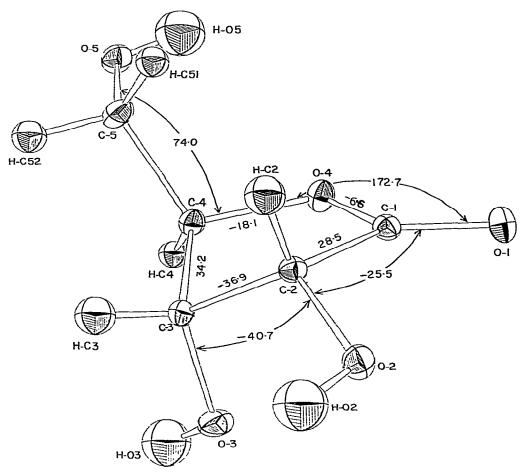


Fig. 1. D-Ribono-1,4-lactone at -150 °C. Atomic notation and thermal ellipsoids at 50% probability¹⁶. The numerical values refer to torsion angles (°). E.s.d. values are 0.1°.

The structure was solved with MULTAN⁶, using 106 reflections for phase generation. The first E-map showed all of the non-hydrogen atoms. The hydrogen atoms were located on difference maps at R=0.092. The parameter refinement was by full-matrix, least squares of $\sum \omega(|F_o|-|F_c|)^2$, where $\omega^{-1}=\sigma^2(F_o)+(0.02I)^2$, using ORFLS⁷ with anisotropic parameters for non-hydrogen atoms and isotropic thermal-parameters for hydrogen atoms. The final agreement factors were R=0.035, $R_\omega=0.037$, S=1.59, where $R=\sum ||F_o|-|F_c||/\sum |F_o|$, $R_\omega=[\sum \omega(|F_o|-|F_c|)^2/\sum |F_o|^2]^{1/2}$, and $S=(\sum \omega(|F_o|-|F_c|)/(m-n)^{1/2}$; m is the number of observations and n is the number of variable parameters. The atomic scattering-factors used for carbon and oxygen were those of Doyle and Turner⁸ and for hydrogen those of Stewart, Davidson, and Simpson⁹. The atomic parameters are given in Table I.

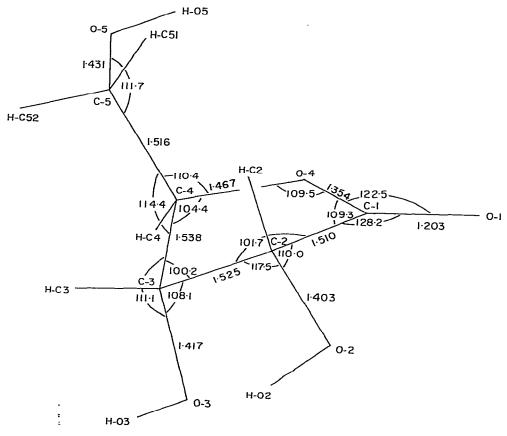


Fig. 2. Bond lengths (Å) and valence angles (°) in D-ribono-1,4-lactone at $-150\,^{\circ}$ C. E.s.d. values are 0.001 Å and 0.1°.

The atomic notation and thermal ellipsoids are shown in Fig. 1 and the molecular dimensions are given in Fig. 2*.

DISCUSSION

Because the (C-O-C=O) group is planar, or close to planar, the γ -lactone ring

is constrained to have a conformation 10 close to E_3 , this being less strained than the planar lactone ring. The data in Table II show ring conformations ranging from midway between 2T_3 ($\varphi = 90^\circ$) through E_3 ($\varphi = 108^\circ$) to midway to 4T_3 ($\varphi = 126^\circ$).

^{*}Tables of structure factors and anisotropic thermal-parameters are deposited with and can be obtained from: Elsevier Scientific Publishing Company, BBA Data Deposition, P. O. Box 1527, Amsterdam, The Netherlands. Reference should be made to No. BBA/DD/176/Carbohydr. Res., 92 (1981) 1-7.

The puckering ranges from q = 0.32 to 0.39 Å, a similar range to that observed in the furanose rings of nucleosides. The exception is 6, where the fused furanose ring constrains the lactone ring to an E_2 conformation ($\varphi = 252^{\circ}$) with less puckering. There are small deviations from planarity of the C-O-C=O group, as measured by the

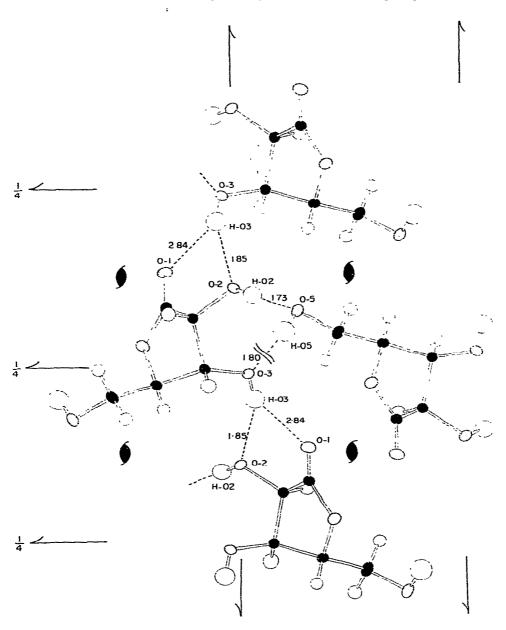


Fig. 3. Hydrogen bonding in the crystal structure of p-ribono-1,4-lactone. The values are $H\cdots O$ hydrogen-bond distances, where the O-H covalent-bond distances are normalized to 0.97 Å in the direction of the O-H bond.

TABLE II
PUCKERING PARAMETERS ^a AND C–O BOND–LENGTHS FOR SOME 1,4-LACTONE RINGS

CRYST File name ^b	Puckering parameters		Bond lengths (Å)			Torsion angle (deg)
	φ(deg)	q(A)	C-1-0-1	C-1-0-4	C-4-0-4	C-4-0-4-C-1-0-1
This structure	99	0.38	1.203(1)	1.354(1)	1.467(1)	+172.7
GULONO 2	107	0.38	1.194(3)	1.346(3)	1.473(3)	+178.4
GALLAD 3	113	0.39	1.198(5)	1.358(5)	1.464(5)	-178.6
MGALAC	104	0.37	1.205(5)	1.350(5)	1.455(6)	+174.7
DGLACM 5	102	0.32	1.210(5)	1.337(4)	1.466(4)	+175.4
GLULAD 6	254	0.16	1.215(5)	1.340(5)	1.475(5)	-169.4

^aRef. 14. ^bThe six-letter acronym is the REFCODE for searching the Cambridge Crystallographic Data File¹⁵.

C-O-C=O torsion angles. These are presumably due to crystal-field forces, except in the case of 6, where a larger departure from planarity can be associated with the strain arising from the fused-ring structure. The C-O-C=O bond lengths show the characteristic lengthening and shortening of the formal C-O bonds because of contributions from the valence-bond resonance form $C^+-O=C-O^-$. The small differences in bond lengths are probably not significant, as they do not appear to be related in any systematic way to the small differences in conformation. The C-C bond lengths are normal, ranging from 1.510 to 1.538 Å, as are the C-OH bonds, 1.403 to 1.431 Å. The orientation of the primary alcohol group is gauche/trans.

The hydrogen-bonding scheme is shown as follows.

As in the crystal structure of 1,6-anhydro β -D-galactopyranose¹¹, the cooperative effect of the infinite chain of hydrogen bonds is maintained while the non-hydrogenated oxygen atom, O-1, is incorporated as a bifurcated interaction^{12,13}. The ring-oxygen atom, O-4, is not included in the hydrogen bonding; its nearest intermolecular neighbor is a methylene hydrogen atom (H-2) at 2.63 Å. The geometry of the hydrogen bonds is shown in Fig. 3. The infinite chain of hydrogen bonds forms a spiral that extends around the screw axis in the x direction. The separation of the two carbonyl oxygen atoms across the screw axes in a dipolar arrangement is such that the O-1···O-1 distance is 3.339(1) Å.

ACKNOWLEDGMENT

This research was supported by the U.S. Public Health Service, National Institutes of Health Grant No. GM-24526.

REFERENCES

- 1 H. M. BERMAN, R. D. ROSENSTEIN, AND J. SOUTHWICK, Acta Crystallogr., Sect. B, 27 (1971) 7-10.
- 2 G. A. JEFFREY, R. D. ROSENSTEIN, AND M. VLASSE, Acta Crystallogr., Sect. B, 22 (1967) 725-733.
- 3 B. Sheldrick, Acta Crystallogr., Sect. B, 29 (1973) 2631-2632.
- 4 M. E. GRESS AND G. A. JEFFREY, Carbohydr. Res., 50 (1976) 159-168.
- 5 S. H. Kim, G. A. Jeffrey, R. D. Rosenstein, and P. W. R. Corfield, Acta Crystallogr., 22 (1967) 733-743.
- 6 G. GERMAIN, P. MAIN, AND M. M. WOOLFSON, Acta Crystallogr., Sect. A, 27 (1971) 368-376.
- 7 W. R. Busing, K. O. Martin, and H. A. Levy, ORFLS, Report ORNL-TM-305, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 1962.
- 8 P. A. DOYLE AND P. S. TURNER, Acta Crystallogr., Sect. A, 24 (1968) 390-397.
- 9 R. F. STEWART, E. R. DAVIDSON, AND W. T. SIMPSON, J. Chem. Phys., 42 (1965) 3175-3187.
- 10 Conformational Nomenclature for Five- and Six-Membered Ring Forms of Monosaccharides and Their Derivatives, Eur. J. Biochem., 111 (1980) 295-298.
- 11 C. CECCARELLI, J. R. RUBLE, AND G. A. JEFFREY, Acta Crystallogr., Sect. B, 36 (1980) 861-865.
- 12 G. A. JEFFREY AND SHOZO TAKAGI, Acc. Chem. Res., 11 (1968) 264-270.
- 13 G. A. JEFFREY AND R. TAYLOR, J. Mol. Struct., 70 (1981) 255-271.
- 14 D. CREMER AND J. A. POPLE, J. Am. Chem. Soc., 97 (1975) 1354-1358.
- 15 F. H. Allen, S. Bellard, M. D. Brice, B. A. Cartwright, A. Doubleday, H. Higgs, T. Hummelink, B. G. Hummelink-Peters, O. Kennard, W. D. S. Motherwell, J. R. Rodgers and D. G. Watson, Acta Crystallogr., Sect. B, 35 (1979) 2331–2339.
- 16 C. K. JOHNSON, ORTEPII. Report ORNL-5138, Oak Ridge National Laboratory, Oak Ridge, Tennessee (1976).